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General Improvements to the MCNP
Alpha-Eigenvalue Solver

Colin Josey

March 26, 2018

Abstract

In this document, a new algorithm for computing the α-eigenvalue
is implemented and tested in MCNP. The algorithm follows the tra-
ditional k–α method in which neutrons are followed from birth until
fission in batches. During this simulation, a number of tallies are per-
formed which are derived from integrating the transport equation over
all phase space. These new tallies along with the collapsed transport
equation are used to compute a physically valid α with or without
delayed neutrons. The performance and accuracy of the method is
then tested, in which it is found that the new algorithm typically out-
performs the current implementation while also representing a more
complete physical picture. Through a convergence analysis, it was
found that many simple test problems had unexpectedly large biases
for reasonable quantities of neutrons per batch. This occurred with
both the old and the new algorithm. However, the tally method had
lower biases for all problems tested. Special implementation consider-
ations are also discussed.

1 Introduction

The α-eigenvalue is one of the possible solutions to the transient neutron
transport equation. Via a separation of variables, the neutron flux is decom-
posed into a constant spatial component and an exponential time component.
The coefficient in the exponent, α, then quantifies the asymptotic time be-
havior of the nuclear assembly. The resulting equation is similar in structure
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to a k-eigenvalue equation. As such, the most common approach is the so-
called k–α iteration method [3], in which α (which scales terms that are
effectively sources or absorbers) is adjusted until k is equal to one.

The updating scheme for α is usually performed through a proportionality
to k − 1. This has a few drawbacks, namely that the proportionality must
be carefully chosen, and that since k is insensitive to the difference between
prompt and delayed neutrons, it tends to yield nonphysical solutions when
delayed neutrons are considered. This work presents an alternative updater
that is not directly a function of k and includes delayed neutrons directly.
This new tally updater is implemented in MCNP and compared against the
algorithm currently implemented.

In order to test this new implementation, a wide variety of tests were
performed. To verify the accuracy, a deterministic infinite medium bench-
mark was created. To quantify the improvement in performance, delayed
critical and prompt supercritical assemblies were run in direct comparison to
the current k–α iteration. In addition, several tests examined the statistical
distribution of α and the bias caused by statistics.

2 Theory

The approach to derive the α-eigenvalue equation starts by performing a
separation of variables. Through the use of a Laplace transform, the neutron
flux can be expressed in the form of Eq. (1) [2]. It should be noted that
this form is not proven to be complete, but works sufficiently well for the
following analysis.

ψ(r, E, Ω̂, t) =
∑
j

eαjtψj(r, E, Ω̂) (1)

If one sorts the αs such that <αn > <αn+1, then the asymptotic time
behavior takes the form of Eq. (2). The same can be done with the delayed
neutron precursors.

lim
t→∞

∂ψ

∂t
= α0ψ (2)

The resulting value α0 is the asymptotic logarithmic time derivative of
the neutron flux. As such, it can characterize the maximum growth rate of
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flux in a fissile geometry. In order to solve for α0, the flux and precursor
density is asserted to take the form of Eq. (3), where N is the number of
precursor groups.

ψ(r, E, Ω̂, t) = ψ(r, E, Ω̂)eαt (3)

Ci(r, t) = Ci(r)eαt i = 1 to N

This can be substituted into the neutron transport equation to take the form
of Eq. (4). This equation follows the standard syntax of Bell and Glasstone,
with the exception of the explicitly stated νs term, which corresponds to
possible multiplicities through (n, 2n) reactions and similar. Also note that
since eαt is everywhere positive (assuming α is real, which is the case for the
eigenvalue of interest), it can be divided out.(

α

v(E)
+ Ω̂ · ∇+ Σt(r, E)

)
ψ(r, E, Ω̂) (4)

=
χp(E)

4π

∫ ∞
0

dE ′νp(E
′)Σf (r, E

′)φ(r, E ′) +
N∑
i=1

χdi(E)

4π
λiCi(r)

+

∫
4π

dΩ′
∫ ∞

0

dE ′νs(E
′)Σs(r, E

′→E, Ω̂′→Ω̂)ψ(r, E ′, Ω̂′)

αCi(r) =

∫ ∞
0

dE ′νdi(E
′)Σf (r, E

′)φ(r, E ′)− λiCi(r)

Ci can also be solved out, yielding Eq. (5).(
α

v(E)
+ Ω̂ · ∇+ Σt(r, E)

)
ψ(r, E, Ω̂) (5)

=
χp(E)

4π

∫ ∞
0

dE ′νp(E
′)Σf (r, E

′)φ(r, E ′)

+
N∑
i=1

χdi(E)

4π

λi
α + λi

∫ ∞
0

dE ′νdi(E
′)Σf (r, E

′)φ(r, E ′)

+

∫
4π

dΩ′
∫ ∞

0

dE ′νs(E
′)Σs(r, E

′→E, Ω̂′→Ω̂)ψ(r, E ′, Ω̂′)

This particular form has two differences from the typical transport equation.
The first is the introduction of the α/v term on the left-hand side. When α
is positive, this can be interpreted as an absorption cross-section. When α
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is negative, this can be interpreted as a source. There are several different
approaches to handling this source. Currently, MCNP adds 2|α|/v(E) to
both sides of the transport equation. The result is an (n, 2n) reaction with
macroscopic cross-section |α|/v(E). Both resulting particles are identical to
the incoming particle.

The second modification is the scaling of the delayed neutron ν by the
factor λi/(α+ λi). As the α eigenvalue approaches −minλi, the population
becomes dominated by delayed neutrons. The two necessary modifications
(the scaling of ν and the modification to the sampling of χdi) are not im-
plemented in the most recent version of MCNP but have been added in in
this development branch. It is worth noting that the singularity in this term
guarantees that α > −minλi.

3 Current Methods

The k–α iteration technique takes Eq. (5) and re-inserts the value of k to
scale both the delayed and prompt fission source. For each batch, α is treated
as if it were static, scaling the νd components and providing either a source or
absorber to the problem. Upon the completion of the batch, k is computed,
and then α is updated such that k → 1.

This stochastic root finding approach can have a number of issues. The
most prominent one is that if the updating scheme αn+1 = f(αn, kn) does not
strictly enforce α > −minλi, nonphysical answers can occur. In addition,
some choices for f can result in chaotic (and thus non-useful) solutions [9].

For MCNP, the current function f is given by:

αn+1 = αn + (kn − ktarget)

(
αn +

kn
Λ

)
where Λ is the mean neutron lifetime. k is chosen from either the collision,
absorption, or track length estimator. ktarget is the target k-eigenvalue, and
is often set to one.

The algorithm used in MCNP does not update α at the end of every
generation. Instead, each batch contains between two and four generations
all simulated with the same α to allow for a more converged source. k and
Λ are only computed in the last of these generations. While this technique
can reduce the source dependency on previous step αs, and as a consequence
reduce autocorrelation, a great deal of information is lost. Testing in Sec. 6.2
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indicates that this approach reduces the figure of merit. As such, the new
algorithm described in the next section only runs one generation per batch.

4 α Tally Method

This scheme makes only one modification to the current MCNP algorithm,
which is to replace f(αn, kn) with a function of tallies. The gist of the idea is
to take Eq. (5) and integrate it over all phase space. Under the assumption
that the current guess of the flux is correct, Eq. (6) is then exact.

α

∫ ∞
0

dE

∫
V

dV
1

v(E)
φ(r, E) +

∫ ∞
0

dE

∫
V

dV Σt(r, E)φ(r, E) (6)

+

∫ ∞
0

dE

∫
4π

dΩ

∮
S

dSψ(r, E, Ω̂)Ω̂ · n

=

∫
V

dV

∫ ∞
0

dE ′νp(E
′)Σf (r, E

′)φ(r, E ′)

+
N∑
i=1

λi
α + λi

∫
V

dV

∫ ∞
0

dE ′νdi(E
′)Σf (r, E

′)φ(r, E ′)

+

∫
V

dV

∫ ∞
0

dE ′νs(E
′)Σs(r, E

′)φ(r, E ′)

Every integral above can be tallied using Monte Carlo. Using the notation
that [·] is a surface tally and 〈·〉 is a flux-integrated volume tally simplifies
the syntax to Eq. (7).

α

〈
1

v

〉
+ 〈Σt〉+ [escape] = 〈νpΣf〉+

N∑
i=1

λi
α + λi

〈νdiΣf〉+ 〈νsΣs〉 (7)

In this form, it is clear that α can simply be solved for. The one root of
interest is going to be a real value in the span [−minλi,∞]. Using a suitably
large maximum value, this root can be found with bisection.

One can also make tallies both with track length and collision estimators.
This results in two αs, αtr and αc. The track length α is used as the simulation
α for the next batch. The choice of the track length estimator over the
collision estimator or some linear combination of the two was arbitrary. Early
testing indicated that the end result was fairly insensitive to this choice.
Once the variance and covariance of each α estimator is known, the two can
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be combined stochastically using the technique described in [13] to improve
results. The final reported α is given by this combined estimate.

There are a number of technical details that need consideration in order
to ensure the performance and quality of this algorithm. These details will
be described in the next few sections.

4.1 Bias in α

The primary drawback of this technique is that, while the tallies that com-
pose α are themselves essentially normally distributed via the central limit
theorem, the combination of these values to compute α is not. In the prompt
case, this effect is fairly minor; the function converting tallies to α is smooth
and uncomplicated. This hypothesis is confirmed in Sec. 6.3.

In the delayed neutron case, however, the bias effect can be quite extreme.
A simple example is a precisely delay-critical geometry. It is expected that
α is precisely zero. However, even a slight increase in the prompt neutron
production tally (which is effectively normally distributed) could push the
geometry to prompt supercritical (with a corresponding very large α). Con-
versely, a slight decrease will not have a balancing effect, as α is bounded on
the negative side. As such, α will be biased positive. For this reason, the
skew and excess kurtosis of the distribution of α as well as the median are
all reported at the end of the simulation (when using tally α), in order to
indicate possible bias. This phenomenon is further investigated in Sec. 6.3.

4.2 Minimizing Cost of Tallying

As shown in Eq. (7), there are six kinds of tallies that need to be performed
in order to calculate α. Two components require data that is not normally
computed during a k-eigenvalue calculation and has not had access optimized.

For 〈νdiΣf〉, the function acenu has been substituted with acenu alpha.
If the simulation is not running an ACODE calculation, then it simply returns
acenu. However, if ACODE is running, it computes a number of values which
are stored in the new variable rtc alpha. In order to accelerate transport,
the α scaled νtotal, νd and pi (the probability of a delayed precursor in group
i) are calculated. These are then used to compute how many fission neutrons
to bank as well as which χ spectrum to sample. To accelerate tallying, the
α unscaled values for all three are also computed and stored.
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With regards to 〈νsΣs〉, things are a bit complicated. νsσs cannot be
computed ahead of time due to S(α, β) effects. While σs is calculated im-
plicitly during transport, it is not disambiguated such that computing νs is
easy. As such, the residual of Eq. (7) is recast as Eq. (8).

r = α− 〈(νp − 1)Σf〉+ 〈(νs − 1)Σs〉 − 〈Σc〉 − [escape]〈
1
v

〉 −
∑
i

λi
α + λi

〈νdiΣf〉〈
1
v

〉
(8)

Σc is already computed explicitly. (νs− 1)σs has a simple form in that it
essentially only contains (n, xn) reactions. These occur at high energies, so
the cross-section itself requires relatively little memory. This cross section is
stored in XSS at pointer JXS(28).

4.3 Tally Numerical Stability

It is important to note that the implementation of the above algorithm is very
sensitive to implementation details. For example, when summed in parallel
or in serial, the tallies can be slightly different. The relative error is often
less than 10−12, but it can be large enough to change the course of a single
neutron. Once this occurs, a cascade effect will result in the final answer
being completely different.

With that in mind, care was taken to ensure the numerical stability of the
algorithm. An easy approach is to expand the precision of the numbers used
for tallying. Quadruple precision was considered, but it slowed down simu-
lation significantly. Instead, double-double arithmetic, using the techniques
in [7], was implemented. All operations, including the individual tallies and
the inter-thread summation use this expanded precision. When passed to the
α computation, the heads and tails of the double-double number are added
together and stored as a double. This significant expansion of numerical
precision effectively eliminates the possibility of discrepancies between serial
and parallel runs at minimal performance cost.

It is worth mentioning that the algorithms listed in [7] are sensitive to
over-zealous optimization. For these algorithms, the precise order of opera-
tions is critical. Some compilers, such as the Intel compiler (version 17.0.1
tested), will perform algebraic transformations that are technically invalid
due to the non-associative nature of floating point arithmetic. In order to
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ensure the correct answer, some compiler flags may be necessary. For Intel,
the flag -fp-model source was added during testing. Not adding this flag
will, at worst, revert accuracy to double precision. Other compilers tested
did not exhibit this effect using the default MCNP flags.

4.4 Statistical Numerical Stability

While the vast majority of MCNP uses the “square of sums, sum of squares”
approach to computing the variance and covariance, this is not particularly
numerically stable. When testing problems with small variances, such as
the infinite medium test problems described in Sec. 6.1, this can result in
inaccurate or even negative variances. To ensure stability, the mean and the
variance were computed using Welford’s method [14]. The covariance, skew,
and excess kurtosis were calculated using Pébay’s methods [10, 11].

As an aside, there are multiple formulas for the calculation of skew and
excess kurtosis. In this particular implementation, skew is given by the G1

estimator and excess kurtosis is given by the G2 estimator in Eq. (9).

mj =
1

n

n∑
i=1

(xi − x̄)j

G1 =

√
n(n− 1)

n− 2

m3

m
3/2
2

(9)

G2 =
n− 1

(n− 2)(n− 3)

(
(n+ 1)

m4

m2
2

− 3(n− 1)

)
4.5 Avoiding Crashes with Negative α

Both the current version of MCNP and the new algorithm perform fission
source iteration as the outer loop during the computation of α. There is a
general issue in α-eigenvalue calculations when performed using fission source
iteration. When the α time source is added to the problem, it is possible
that the geometry can be “supercritical” on this source alone. As a simple
example, consider the fictitious (n, 2n) reaction often used to handle the time
source. The probability of doubling the weight of the particle is given by

Pdouble =
|α|
v

Σt + |α|
v
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As this value approaches 0.5, the expected total weight of the particle grows.
Once the value exceeds 0.5, then the weight can grow without bound. In
MCNP, the number of particles added to the fission bank per fission is pro-
portional to the weight of the particle that caused the fission. If such a
particle had repeatedly undergone (n, 2n) reactions, at best this will heavily
bias the solution. At worst, the number of particles will exceed the fission
bank, resulting in a crash.

This issue has lead to quite a bit of discussion in the literature. One

modification replaces the (n, 2n) reaction, Σα = |α|/v with an
(

n, 1+η
η

n
)

reaction, Σα = η|α|/v [16]. Adjusting the value of η towards zero increases
the variance, which can help terminate chains earlier.

A second alternative is to cease iterating on the fission source and instead
iterate on the α time source [12]. This also allows for a direct computation
of α. Additionally, each batch forces the normalization of the time source.
The result is an algorithm that is only valid for negative α, but otherwise
always stable.

A third option is to approximate the transport equation. For example,
the cross section |α|/v could be limited to some fraction of Σt or particles
with weights higher than a threshold could be terminated. Both options
would bias the simulation.

The problems tested in Sec. 6 have relatively small values of negative
α. Even for the prompt α comparisons, extreme growth of particle weight
was rare. As such, a weight cutoff of 100 was used in both the old and the
new simulations. This allowed a direct comparison between the two without
resorting to substantial modification. This removed a maximum fractional
weight of 4 × 10−6 in the problems tested. Further research on eliminating
this problem in the general case without approximation is ongoing.

5 Usage and Changes to Current Runs

As implemented, both the old and new algorithms are available simultane-
ously. The new α algorithm utilizes the current ACODE card with one mod-
ification. The value KALPHA can be set to 5, which enables the new tally
estimator. Table 1 lists the options in the ACODE card.
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Parameter Description Default

NSRCK Number of source histories per generation 1000

RKK Initial guess for keff 1.0

IKZ Number of batches before α updatesa 30

KCT Total number of batches IKZ + 100

MSRK Number of source points for which storage will be allocated Larger of 4500 or
2×NSRCK

KNRM Normalization method for tallies: 0 = weight, 1 = histories 0

KALPHA Estimation method for α:

1. Collision k for k–α iteration

2. Absorption k for k–α iteration

3. Track length k for k–α iteration

4. Differential operator perturbation

5. Tally-based α solve (NEW)

3

KALSAV Number of batches before α is averaged and tallying begins automatic b

KALREG Batch to start ln-ln regression and reduce number of gener-
ations per batch from 4 to 2 (ignored if KALPHA = 5)

KALSAV + 2

MKRP Maximum number of batches for which values are retained
on MCTAL or RUNTPE files

6500

ALPHA Initial guess for α, 108/s 0.0

ALMIN Minimum value permitted for α, 108/s 0.0

KTARG Target value for keff 1.0

Table 1: MCNP ACODE Parameters

aOther documents mention that this is the inactive cycles. This might lead to confusion
in comparison to KCODE, in which tallies begin once inactive cycles end. For ACODE, tallies
begin after KALSAV.

bThe automatic feature of KALSAV checks to see that keff is converged to within one
standard deviation of KTARG. It performs no convergence tests on the source. This will be
tested in Sec. 6.4.
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When KALPHA is set to 5, settling generations are not performed. In every
batch, α is updated. As a consequence, KALREG is meaningless. In order to
enable delayed neutrons, totnu must be explicitly added to the data cards.
A prompt-only simulation will be performed if it is ignored.

A few changes had to be made to the current ACODE output. While
geometries that ignore delayed neutrons typically have αs on the order of
shakes in both the negative and positive directions, near critical geometries
with delayed neutrons have much smaller αs. As a consequence, output
in many locations has been replaced with scientific notation. In addition,
Shannon entropy is now always output, as it is a useful tool for determining
convergence.

6 Testing

For testing, several parameters were of interest. The first was the accuracy
of the method. A simple deterministic benchmark was developed in order to
do direct comparisons in Sec. 6.1. The second is performance. The figure of
merit was compared between the k–α algorithm and the tally algorithm for
delay-critical geometries and for prompt supercritical geometries in Sec. 6.2.
The bias of the two algorithms were compared in Sec. 6.3. Then finally, a
comparison of convergence is performed in Sec. 6.4.

For all tests that use real data, ENDF-B/VII.1 [5] was used at 293.6 K.

6.1 Infinite Medium Deterministic Comparison

One of the simplest options to ensure the accuracy of an algorithm is to create
a deterministic benchmark. The complete approach used here is described
in [8]. For this test, an infinite medium was filled with a material with cross-
sections as listed in Table 2. All energy dependent functions (cross-sections,
χ) were treated as constant from 10−11 to 20 MeV and zero otherwise. The
term fs is a scaling parameter to adjust the reactor from subcritical to prompt
supercritical. In addition, the delayed precursor groups listed in Table 3 were
used. Scattering was treated as isotropic.

Using this data, Eq. (4) was discretized into groups. This results in
Eq. (10), where f is the scattering kernel and δ is the energy width of the
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Parameter Value

Σt 1.0 cm−1

Σs 0.3 cm−1

Σc 0.45 cm−1

Σf 0.25 cm−1

νp 2.6fs cm−1

νd 0.2fs cm−1

A 10
Speed of Light 2.997925× 108 m/s
Mass of Neutron 939.58× 106 MeV/c2

Table 2: Neutronics Parameters for the α-Eigenvalue Benchmark

Group λ, s−1 p, Probability

1 0.0133 0.0350
2 0.0327 0.1807
3 0.1208 0.1725
4 0.3028 0.3868
5 0.8495 0.1586
6 2.8530 0.0664

Table 3: Delayed Precursor Parameters for the α-Eigenvalue Benchmark
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Parameter Value

Neutrons / Batch 100000
Batches 200
Batches Before α Updated 50
Batches Before Active 100
Initial α 0.0
Minimum α −1.33× 10−2 + 10−13 s−1

Table 4: Infinite Medium Benchmark MCNP Simulation Parameters

group.

1

δj

∫ Ej+1

Ej

dE
1

v(E)
αφj + Σtφj =

∑
i

χjνpΣfφi +
∑
i

χjλiCi

+
∑
i

∫ Ej+1

Ej

dE ′
∫ Ei+1

Ei

dE
Σsf(αsE,E;E ′)

δi
φi (10)

αCj =
∑
i

pjνdΣfφi − λjCj

The integrals over inverse velocity (relativistic) and scattering were per-
formed numerically to high precision. Then Eq. (10) was converted into a
matrix for which the eigenvalues can be directly solved. This was performed
for values of fs from 0.9 to 1.1.

This approach is only exact as the number of groups, N approaches in-
finity. As such, the number of groups was repeatedly doubled until at least
the first ten digits were constant. In the case of fs = 1.1, this was im-
practical, so sequence acceleration using Wynn’s epsilon [15] was performed
for N = 2048, 4096, 8192, 16384, 32768. All arithmetic with the exception of
fs = 1.1 used 256-bit reals.

These values were then compared to MCNP in which the exact same
model was simulated using the tally α algorithm. These simulations were
repeated 100 times with different random sequences in order to measure the
true uncertainty. The simulation parameters are listed in Table 4.

The mean and the standard deviation of the mean are shown in Table 5
in comparison to the deterministic results. For the deterministic results, all
stationary digits are listed. In general, the deterministic results were either
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fs Deterministic α, s−1 Mean α, s−1 α Std. Dev of Mean
Det. Groups

50 MCNP Runs 50 MCNP Runs

0.9 −1.297 467 136 352 483× 10−2 −1.297 467 136 352 466× 10−2 2.5× 10−18 512
0.925 −1.284 043 823 409 392× 10−2 −1.284 043 823 409 359× 10−2 3.8× 10−18 512
0.95 −1.254 909 434 037 18 × 10−2 −1.254 909 434 037 101× 10−2 9.6× 10−18 512
0.975 −1.150 917 974 504 57 × 10−2 −1.150 917 974 504 125× 10−2 4.9× 10−17 512
1.0 −6.385 261 566 394 × 10−14 −1.6960 × 10−16 1.1× 10−19 512
1.025 8.941 945 357 03 × 10−2 8.941 945 357 075 2 × 10−2 2.8× 10−14 512
1.05 5.435 470 141 3 × 10−1 5.435 470 141 357 7 × 10−1 9.4× 10−13 512
1.075 1.873 125 125 × 101 1.873 125 126 86 × 101 9.7× 10−9 2048
1.1 4.560 412 921 × 107 4.560 53 × 107 2.1× 103 seq. accel

Table 5: Results Comparing the Deterministic Solution to the Modified MCNP Solution

within statistics or within an absolute error of 10−12 s−1. This gives a high
degree of confidence in the implementation.

6.2 Analysis of Performance

In order to compare the performance of the old algorithm to the new one, a
number of prompt α tests were run. The first block contains several critical
assemblies from the ICSBEP Handbook [1]. In order to measure the perfor-
mance of adding delayed neutron tallies, several prompt supercritical tests
from [6] (problems 2, 3, and 4) were then tested in the second block.

Unless otherwise noted, all simulations used the parameters listed in Ta-
ble 6. It is important to note that the old α eigenvalue calculation repeats
batches in order to better converge α. As such, the old algorithm will run
approximately twice the number of neutrons. This increase in run time is
normalized out through the comparison of figure of merit. The figure of merit
was calculated as:

FOM =
1

σ2
truet̄total

where t̄total is the mean active simulation time. The standard deviation
was computed by running each simulation 100 times with different random
sequences. Each model was run using three of the original methods in MCNP
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Parameter Value

Neutrons / Batch 10000
Batches 600
Batches Before α Updated 20
Batches Before Active 100
Initial α 0.0
Minimum α −108 s−1

Table 6: Critical Assembly MCNP Simulation Parameters

Benchmark Case Name keff

ieu-met-fast-007 — BIG TEN 1.00461± 0.00003
u233-met-fast-006 — Flattop-23 0.99879± 0.00004
heu-met-fast-028 — Flattop-25 1.00282± 0.00004
pu-met-fast-006 — Flattop-Pu 0.99999± 0.00005
heu-met-fast-001 — Godiva 0.99979± 0.00004
pu-met-fast-001 — Jezebel 0.99992± 0.00004
u233-met-fast-001 — Jezebel-233 0.99985± 0.00004
pu-met-fast-008 2 THOR 0.99771± 0.00004
heu-met-inter-006 1 Zeus-1 0.99299± 0.00005

Table 7: Critical Assembly Parameters

(kc, ktr, ka) and all figures of merit are normalized to the best result of the
three.

6.2.1 Critical Assemblies

The nine critical assemblies tested are listed in Table 7. These models were
chosen as a roughly representative spread of different materials and geome-
tries. The geometries span from a bare spheres (Godiva, Jezebel) to large
reflected cylinders (Zeus-1, BIG TEN). The keff was calculated using 500
thousand neutrons per batch.

Due to errors in the nuclear data and the experiment, these values of
k diverge from the experimental results. For the rest of these tests, these
simulations were treated as delay critical by setting the KTARG card to the
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Model k–α α, s−1 Prompt Tally α, s−1

BIG TEN −1.1736± 0.0042× 105 −1.1615± 0.0052× 105

Flattop-23 −3.147 ± 0.027 × 105 −2.847 ± 0.026 × 105

Flattop-25 −3.982 ± 0.017 × 105 −3.861 ± 0.017 × 105

Flattop-Pu −2.311 ± 0.027 × 105 −2.058 ± 0.027 × 105

Godiva −1.1503± 0.0053× 106 −1.1432± 0.0052× 106

Jezebel −7.061 ± 0.092 × 105 −6.72 ± 0.10 × 105

Jezebel-233 −1.0790± 0.0096× 106 −1.064 ± 0.011 × 106

THOR −2.417 ± 0.028 × 105 −2.075 ± 0.027 × 105

Zeus-1 −3.752 ± 0.016 × 103 −3.433 ± 0.016 × 103

Table 8: Comparison of Prompt α Eigenvalues, Critical Assemblies

k given above. It is important to note that this is a rough approximation.
Some of the reactor k-eigenvalues are not precisely 1, and scaling just k does
not correct for all of the systematic errors present.

The computed value of prompt α is listed in Table 8. Values shown
are for the mean and standard deviation of the mean of the estimator with
the smallest standard deviation. It is notable that the new algorithm yields
answers that are different from the old one by many standard deviations.
The most extreme case, Zeus-1, has a discrepancy of nearly 14 standard
deviations. As will be shown in Sec. 6.3, these discrepancies are actually due
in large part to bias effects from too few neutrons per batch.

As for the performance, the relative figure of merit is tabulated in Ta-
ble 9. In all tests, the combined α direct tally estimator outperformed the
stock algorithm, with improvements from 15 to 90% in figure of merit. The
combined estimator often performed as well as the best tally estimator, but
usually not much better. The track length tally α tended to outperform the
collision tally except in the case of BIG TEN.

The last test of interest is to quantify the impact of the current MCNP
approach of running multiple generations per batch but only tallying and
updating α on the last one. As this is expected to most benefit reactors
with large dominance ratios, BIG TEN was rerun with two generations per
batch with the tally α algorithm. The resulting α and FOM are tabulated in
Table 10. In this particular case, running multiple generations per batch to
converge the source in general reduces the figure of merit. It does not reduce
it by a factor of two, as would be expected due to the runs taking twice as
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Model
k–α FOM Prompt Tally FOM

Col. Abs. Tr. Ln. Col. Tr. Ln. Combined

BIG TEN 0.98 0.99 1.00 1.15 1.10 1.15
Flattop-23 0.73 0.75 1.00 1.81 1.91 1.90
Flattop-25 0.97 0.79 1.00 1.76 1.82 1.82
Flattop-Pu 0.85 1.00 0.88 1.63 1.74 1.73
Godiva 0.69 0.72 1.00 1.25 1.79 1.89
Jezebel 0.38 0.41 1.00 1.01 1.49 1.49
Jezebel-233 0.44 0.43 1.00 0.84 1.39 1.48
THOR 0.49 0.61 1.00 1.81 1.87 1.88
Zeus-1 1.00 0.97 0.87 1.78 1.84 1.88

Table 9: Normalized Figures of Merit, Critical Assemblies

Mode α, s−1 Normalized FOM

k–α −1.1736± 0.0042× 105 1.00
Tally, One Gen. −1.1615± 0.0052× 105 1.15
Tally, Two Gen. −1.1654± 0.0043× 105 0.83

Table 10: BIG TEN, Multiple Generations per Batch

long. As such, the per-batch variance is decreased, but the cost of the batch
is increased more than the decrease in the variance.

6.2.2 Supercritical Assemblies

For the supercritical test, the three prompt supercritical problems from [6]
were run. Problem 2 corresponds to a double density Godiva sphere. Problem
3 corresponds to a double density Godiva reflected with 30 cm of water.
Problem 4 corresponds to a Godiva sphere diluted 100:1 water to uranium.
All three geometries have k-eigenvalues well in excess of prompt supercritical.
As such, the results should be the same with or without delayed neutrons.
This allows for direct comparison of the performance of the new algorithm
with delayed neutrons as compared to the stock algorithm.

Table 11 lists the mean α-eigenvalues for all three test problems. All
values are effectively identical within statistics. Table 12 lists the relative
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Model k–α α, s−1 Prompt Tally α, s−1 Delay Tally α, s−1

Problem 2 1.445 85± 0.000 11× 108 1.446 10± 0.000 11× 108 1.446 04± 0.000 12× 108

Problem 3 1.464 79± 0.000 11× 108 1.465 04± 0.000 12× 108 1.464 92± 0.000 11× 108

Problem 4 6.708 86± 0.000 44× 105 6.709 43± 0.000 39× 105 6.708 73± 0.000 36× 105

Table 11: Comparison of α Eigenvalues, Supercritical Assemblies

Model
Prompt Tally FOM Delay Tally FOM

Col. Tr. Ln. Combined Col. Tr. Ln. Combined

Problem 2 1.86 1.60 1.74 1.02 1.15 1.12
Problem 3 1.66 1.55 1.67 1.38 1.30 1.37
Problem 4 2.26 2.21 2.26 1.78 1.77 1.77

Table 12: Normalized Figures of Merit, Supercritical Assemblies

figure of merit as compared to the best k–α estimator. In this case, the tally
algorithm significantly outperformed the k–α algorithm even with the added
cost of tallying delayed particles. There is indeed a slowdown corresponding
to the time required to calculate the α scaled ν values and the time required
to tally the delayed neutron precursor populations. That slowdown is on the
order of 25-35%.

6.3 Analysis of Bias

As mentioned in the theory sections, one of the drawbacks of the new tally
algorithm is that the nonlinear transform used to generate α will induce bias.
However, it is well-known that k is biased [4], so it is also anticipated that
the k–α algorithm will also be biased. The important question then is: how
does the bias compare between algorithms?

To test this, the Zeus-1 model, which had the largest discrepancy in
Sec. 6.2.1, was run with a fixed 500 million active neutrons. The number
of batches and particles per batch were adjusted to examine how the α-
eigenvalue converges. In Fig. 1, the final α-eigenvalue is plotted as a function
of neutrons per batch. Both algorithms are indeed converging to the same
value of roughly −3.5× 103 s−1 (within statistics). However, while the tally-
based α starts relatively close to the final answer, the k–α solve is heavily
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Figure 1: Convergence of Prompt α with Neutrons / Batch

biased towards negative α. This bias explains the discrepancy in Sec. 6.2.1.
With this understanding, the critical assemblies were rerun with 2 mil-

lion neutrons per batch. The results are shown in Table 13. Here, due to
the cost of these simulations, the error is the estimate as reported by the
simulation and not the true standard deviation. This value is liable to be an
underestimation. Under these circumstances, all experiments match within
two standard deviations.

From the previous section on performance, the FOM benefit of the tally
algorithm usually did not exceed 2. Since the tally α and k–α iteration were
run with identical settings and k–α typically runs two generations per batch,
k–α takes roughly twice as long to run. As such, it is anticipated that the k–α
solution in Table 13 is slightly more accurate despite having worse estimated
standard deviations. Using this value as the reference, the bias in the 10
thousand neutrons per batch solutions from Table 8 can be estimated. This
is tabulated in Table 14. Here, for all geometries, the tally estimator had
lower bias. In addition, the tally estimator is effectively within statistics on
all values with the possible exception of Zeus-1.

The convergence of the results with delayed neutrons enabled was also
analyzed. The Zeus-1 model, in which KTARG is set to keff and delayed neu-
trons are enabled, should ideally yield an α of zero. As shown in Fig. 2,
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Model k–α α, s−1 Prompt Tally α, s−1

BIG TEN −1.1559± 0.0028× 105 −1.1577± 0.0018× 105

Flattop-23 −2.840 ± 0.014 × 105 −2.8704± 0.0058× 105

Flattop-25 −3.874 ± 0.011 × 105 −3.8680± 0.0051× 105

Flattop-Pu −2.065 ± 0.016 × 105 −2.0813± 0.0051× 105

Godiva −1.1328± 0.0035× 106 −1.1374± 0.0028× 105

Jezebel −6.561 ± 0.064 × 105 −6.555 ± 0.051 × 105

Jezebel-233 −1.0585± 0.0070× 106 −1.0619± 0.0059× 106

THOR −2.114 ± 0.020 × 105 −2.0845± 0.0062× 105

Zeus-1 −3.482 ± 0.011 × 103 −3.500 ± 0.013 × 103

Table 13: Prompt α Eigenvalues, Critical Assemblies, 2 Million N / Batch

Model k–α Bias Tally Bias
Percent Std. Deviations Percent Std. Deviations

BIG TEN 1.5 % 3.5 0.48 % 0.95
Flattop-23 10.8 % 10.1 0.24 % 0.23
Flattop-25 2.8 % 5.3 0.32 % 0.61
Flattop-Pu 11.9 % 7.9 0.36 % 0.24
Godiva 1.5 % 2.8 0.92 % 1.7
Jezebel 7.6 % 4.5 2.4 % 1.3
Jezebel-233 1.9 % 1.7 0.52 % 0.43
THOR 14.3 % 8.8 1.8 % 1.2
Zeus-1 7.8 % 13.7 1.4 % 2.5

Table 14: Bias of the 10 Thousand Neutrons per Batch Simulations
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it is quite challenging for a simulation to yield an accurate value. At 2500
neutrons per batch, the mean indicates that the reactor is effectively prompt
supercritical. As the neutrons per batch is increased, the mean begins to
converge towards critical. The answer is still unreasonably inaccurate until
at least 250 thousand. At 1 million, the mean and median still diverge by
more than 3 standard deviations. It is also notable that the median is far
less sensitive to the neutrons per batch. Even at 2500, the median reports a
near-critical value.

In order to better grasp the situation, the distributions of α were plotted
for the 2500, 100 thousand, and 1 million neutrons per batch runs. These
results are shown in Fig. 3. In the 2500 neutron case, the distribution is fully
multimodal. The rightmost mode corresponds to a prompt supercritical tally.
The remaining modes indicate the general structure of Eq. (7). Increasing to
100 thousand neutrons per batch, the distribution becomes unimodal. How-
ever, there are rare tallies of very large values of α, skewing the distribution.
In this particular case, only 1.9% of the batches exceed the mean. Further
increasing to 1 million results in a single mode without significant outliers.

This last distribution was plotted in a quartile-quartile plot to compare
against both a normal and a log-normal distribution in Fig. 4. In the log-
normal case, minλi was added to α to ensure positivity. It is clear that the
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distribution deviates substantially from both normal and log-normal, even
with 1 million neutrons per batch.

6.4 Convergence

For this final test, the convergence of the algorithms was investigated. Before
a user performs tallies, it is vital that all inputs to the batch must be station-
ary. In the α-eigenvalue, this includes both α and the source distribution.
The source convergence is nominally quantified by Shannon entropy.

In order to test convergence, a problem with poor convergence properties
is needed. As such, a Godiva sphere was expanded in radius to 2 meters and
then reflected with 30 cm of water. The large mass should in general have a
high dominance ratio. This will reduce the convergence rate.

Both the k–α and tally α algorithms were used to simulate this sphere.
1 million particles per batch were used and 2000 batches recorded. α was
allowed to vary starting at batch 20. In this particular case, the k–α method
ran 4 generations per batch for batches 21-800. The results are plotted in
Fig. 5. Due to the multiple generations per batch, the k–α method converged
much quicker on a batch-scale. When renormalized for the same number of
generations (and, thus, simulation time), performance is effectively identical.

The value of α was also plotted similarly in Fig. 6. Here, α was always
effectively converged by batch 50, so further points are not plotted. One in-
teresting thing to note is that the tally α rises smoothly to the final value, but
the k–α method has a ringing phenomenon. Overall, the Shannon entropy
converges long after the eigenvalue, as is the case in k-eigenvalue simulations.

It is also worth testing when one should switch from k convergence to α
convergence. In the previous tests, generation 20 was used as the transition.
Using the tally algorithm, this test was repeated with a cutoff of 600 (when
k Shannon entropy became stationary), and a cutoff of 1100. The results
are shown in Fig. 7, along with the k-eigenvalue plot. For the 20 and 600
case, both simulations effectively had the same convergence in the end, with
stationarity near batch 900. As would be expected, the 1100 case was not
stationary until batch 1400. At least for this problem, there is a disadvantage
to setting IKZ large and no apparent disadvantage to setting IKZ small.

The automatic feature of KALSAV was also used for the 600 and 1100 cases.
k was within 1 standard deviation by batch 609 and 1107 respectively. Since
the source was far from converged at both points, any tallies would likely be
incorrect.
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Figure 4: Q-Q Plots vs. Normal and Log-Normal Distributions for α.
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7 Recommendations for Use

Based on the prior sections, a few recommendations can be made for the
correct use of ACODE with the new modifications. Recommendations for each
option of the ACODE card are listed below.

NSRCK - Number of source histories per batch

As demonstrated in Sec. 6.3, the number of source particles should be large
enough such that the bias of the α distribution is acceptable. One quick test
is to compare the mean and the median. One could also examine the skew
and the excess kurtosis of the distribution.

There are two cases in which one would need more neutrons per batch
than commonly anticipated. The first case involves any simulation near
critical. For these, the relative magnitude of the bias as compared to α can
grow quite large. In extreme cases, this can prevent knowing if a geometry
is subcritical or supercritical.

The second case involves the prompt critical boundary in delay neutron
simulations. Any simulation in which α can be on both sides of this boundary
will have α heavily biased positive. For the test of delay critical Zeus-1, there
were still indications of bias at 1 million particles per batch. Even more
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neutrons will be required as one approaches prompt supercritical.

RKK - Initial guess for keff

This scaling parameter is only needed if reactor is initially very distant from
critical. A large value will reduce the number of particles written to the
fission bank in the first batch, possibly preventing crashes. Later batches
will use the calculated k value and not RKK.

IKZ - Number of batches before α updates

A sufficient amount of time is needed between IKZ and KALSAV for both α
and the source distribution to stabilize. There appears to be nearly no reason
to set IKZ to a large value. As such, a value of 5 to 50 is adequate.

KCT - Total number of batches

The value KCT - KALSAV determines the number of active batches. This needs
to be large enough that the distribution of batches can approach Gaussian.
As such, this should be at least 50 larger than KALSAV.

MSRK - Number of source points for which storage will be allocated

When simulating a model with a large negative α, increasing this value might
improve stability and prevent source bank overruns. However, there are some
simulations in which the time source can grow without bounds, and no value
of MSRK will prevent crashes. This is currently an open problem.

KNRM - Normalization method for tallies

This setting should be left as default.

KALPHA - Estimation method for α

The new tally algorithm outperforms the old one on all problems tested, so
it is suggested to enable the new algorithm via KALPHA = 5.
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KALSAV - Number of cycles before α is averaged and tallying begins

This should be large enough that both α and the source are converged. It
is recommended to run the simulation with a smaller NSRCK and observe the
Shannon entropy. If the Shannon entropy appears converged at iteration N ,
set KALSAV a bit higher than N . Upon completion of the new simulation,
examine the Shannon entropy again to determine if KALSAV was sufficiently
large. This should not be set to automatic, as it only checks for k convergence
and will ignore source convergence.

KALREG - Batch to reduce internal settling generations and start
ln-ln regression

Leave as default.

MKRP - Number of batches for which data is retained

In order to use some of the diagnostics at the end of the simulation, such as
the median, MKRP must be larger than KCT. This allows all of the α values to
be available at once.

ALPHA - Initial guess

Setting ALPHA to the expected value of α might improve convergence. How-
ever, it is not necessary.

ALMIN - Minimum α

Some capabilities are incompatible with negative α, such as DXTRAN spheres.
In addition, analog capture may give zero weights with α negative. If this is
a concern, ALMIN should be set to zero. Otherwise, there are no ill effects to
setting ALMIN too low. Conversely, if ALMIN is too large (such that a batch α
needs resetting), it might bias the answer. For delayed neutron simulations,
the batch α will never go below −minλ, so any ALMIN below that value will
have identical results.

KTARG - Target keff

If the keff of the geometry is known to be a certain value, but the computed
keff is different, this can be used to adjust the problem closer to the right

28



answer. An example is described in Sec. 6.2.1. It is important to note that
this is a coarse approximation, as the discrepancy is almost certainly not due
to a proportionality error in the fission data.

8 Conclusions

These modifications to MCNP in general improve performance and expand
capabilities. The new tally α-eigenmode calculator was found to have a 15-
126% higher figure of merit as compared to the best result from stock k–α
iteration. The addition of support for delayed neutrons during α simulation
allows for analysis of a wide variety of new problems. Comparisons against
a deterministic benchmark show solutions that are either within statistics or
within 10−12 s−1 absolute error.

In addition, an analysis of convergence of α for both the k–α and tally
algorithms was performed. One interesting finding concerns the bias of the
final α. In several cases, it was found that 10 thousand neutrons per batch
was insufficient. When the prompt α of Zeus-1 was calculated, errors in α
on the order of 10% occurred at when using the k–α iteration. The tally
algorithm demonstrated a decreased bias at the same point.

An even more extreme case of bias occured when the Zeus-1 model was
simulated with delayed neutrons. The effect of the prompt supercritical
values of α biased results positive. α only approached the correct near-critical
value with 250 thousand neutrons per batch, and there were indications that
even the 1 million neutrons per batch solution was biased. For this reason,
it is recommended that such simulations are performed with care.
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[10] Philippe Pébay. Formulas for robust, one-pass parallel computation of
covariances and arbitrary-order statistical moments. Technical report,
Sandia National Laboratories, 2008.

[11] Philippe Pébay, Timothy B. Terriberry, Hemanth Kolla, and Janine
Bennett. Numerically stable, scalable formulas for parallel and online
computation of higher-order multivariate central moments with arbi-
trary weights. Computational Statistics, 31(4):1305–1325, Dec 2016.

30



[12] Hyung Jin Shim, Sang Hoon Jang, and Soo Min Kang. Monte Carlo
alpha iteration algorithm for a subcritical system analysis. Science and
Technology of Nuclear Installations, 2015, 2015.

[13] Todd J Urbatsch, R Arthur Forster, Richard E Prael, and Richard J
Beckman. Estimation and interpretation of keff confidence intervals in
MCNP. Nuclear technology, 111(2):169–182, 1995.

[14] BP Welford. Note on a method for calculating corrected sums of squares
and products. Technometrics, 4(3):419–420, 1962.

[15] Peter Wynn. On a device for computing the em(sn) transformation.
Mathematical Tables and Other Aids to Computation, pages 91–96, 1956.

[16] Tao Ye, Chaobin Chen, Weili Sun, Benai Zhang, and Dongfeng Tian.
Prompt time constants of a reflected reactor. Technical report, 2008.

31


